Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Dalton Trans ; 51(4): 1434-1445, 2022 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-34985070

RESUMO

The notion of a "silent CO group" (effectively an infinitely heavy CO group) is introduced to enable energy-factored force fields to be estimated accurately for molecules where there are fewer ν(CO) frequencies than force constants in the force field (viz. underdetermined force fields). The symmetry classes of molecules covered are the Cs tricarbonyls (e.g. Fe(CO)3(diene) and fac-Re(CO)3(L-L)X), C2v tricarbonyls (e.g. mer-M(CO)3(L)3 M = Cr, Mo, W), C3v tetracarbonyls (e.g. Fe(CO)4(L)), C2v tetracarbonyls (e.g. cis-M(CO)4(L)2 and Fe(CO)4(L)) and C4v pentacarbonyls (e.g. M(CO)5(L) M = Cr, Mo, W and M(CO)5(X) M = Mn, Re). It is a relatively simple matter to extend the method to types of molecules not directly considered in this paper.

2.
Biochim Biophys Acta ; 1837(10): 1835-46, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-24984074

RESUMO

In this study, we use the photosynthetic purple bacterium Rhodobacter sphaeroides to find out how the acclimation of photosynthetic apparatus to growth conditions influences the rates of energy migration toward the reaction center traps and the efficiency of charge separation at the reaction centers. To answer these questions we measured the spectral and picosecond kinetic fluorescence responses as a function of excitation intensity in membranes prepared from cells grown under different illumination conditions. A kinetic model analysis yielded the microscopic rate constants that characterize the energy transfer and trapping inside the photosynthetic unit as well as the dependence of exciton trapping efficiency on the ratio of the peripheral LH2 and core LH1 antenna complexes, and on the wavelength of the excitation light. A high quantum efficiency of trapping over 80% was observed in most cases, which decreased toward shorter excitation wavelengths within the near infrared absorption band. At a fixed excitation wavelength the efficiency declines with the LH2/LH1 ratio. From the perspective of the ecological habitat of the bacteria the higher population of peripheral antenna facilitates growth under dim light even though the energy trapping is slower in low light adapted membranes. The similar values for the trapping efficiencies in all samples imply a robust photosynthetic apparatus that functions effectively at a variety of light intensities.


Assuntos
Adaptação Fisiológica , Complexos de Proteínas Captadores de Luz/fisiologia , Luz , Fotossíntese , Rhodobacter sphaeroides/fisiologia , Fluorescência , Cinética , Rhodobacter sphaeroides/metabolismo
3.
Biophys J ; 99(1): 67-75, 2010 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-20655834

RESUMO

Photosynthetic chromatophore vesicles found in some purple bacteria constitute one of the simplest light-harvesting systems in nature. The overall architecture of chromatophore vesicles and the structural integration of vesicle function remain poorly understood despite structural information being available on individual constituent proteins. An all-atom structural model for an entire chromatophore vesicle is presented, which improves upon earlier models by taking into account the stoichiometry of core and antenna complexes determined by the absorption spectrum of intact vesicles in Rhodobacter sphaeroides, as well as the well-established curvature-inducing properties of the dimeric core complex. The absorption spectrum of low-light-adapted vesicles is shown to correspond to a light-harvesting-complex 2 to reaction center ratio of 3:1. A structural model for a vesicle consistent with this stoichiometry is developed and used in the computation of excitonic properties. Considered also is the packing density of antenna and core complexes that is high enough for efficient energy transfer and low enough for quinone diffusion from reaction centers to cytochrome bc(1) complexes.


Assuntos
Cromatóforos Bacterianos/metabolismo , Metabolismo Energético , Modelos Biológicos , Fotossíntese , Rhodobacter sphaeroides/citologia , Rhodobacter sphaeroides/metabolismo , Absorção , Adaptação Fisiológica/efeitos da radiação , Cromatóforos Bacterianos/química , Cromatóforos Bacterianos/efeitos da radiação , Metabolismo Energético/efeitos da radiação , Transferência de Energia/efeitos da radiação , Luz , Complexos de Proteínas Captadores de Luz/metabolismo , Modelos Moleculares , Conformação Molecular , Fotossíntese/efeitos da radiação , Rhodobacter sphaeroides/fisiologia , Rhodobacter sphaeroides/efeitos da radiação , Análise Espectral
4.
J Am Chem Soc ; 131(3): 896-7, 2009 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-19128000

RESUMO

A simple method is described for the site-specific attachment of yellow fluorescent protein (YFP) to glass surfaces on length scales ranging from tens of micrometers to ca. 200 nm. 3-Mercaptopropyl(triethoxy silane) is adsorbed onto a glass substrate and subsequently derivatized using a maleimide-functionalized oligomer of ethylene glycol. The resulting protein-resistant surface is patterned by exposure to UV light, causing photochemical degradation of the oligo(ethylene glycol) units to yield aldehyde groups in exposed regions. These are covalently bound to N-(5-amino-1-carboxypentyl)iminoacetic acid, yielding a nitrilotriacetic acid (NTA)-functionalized surface, which following complexation with Ni(2+), is coupled to His-tagged YFP. Using scanning near-field photolithography, in which a UV laser coupled to a scanning near-field optical microscope is utilized as the light source for photolithography, it is possible to fabricate lines of protein smaller than 200 nm, in which the biomolecules remain strongly optically active, facilitating the acquisition of diffraction-limited fluorescence images by confocal microscopy.


Assuntos
Proteínas de Bactérias/química , Vidro , Proteínas Luminescentes/química , Nanoestruturas/química , Cor , Microscopia de Força Atômica , Nanoestruturas/ultraestrutura , Espectrofotometria , Propriedades de Superfície , Pesos e Medidas
5.
J Biol Chem ; 283(45): 30772-9, 2008 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-18723509

RESUMO

The mapping of the photosynthetic membrane of Rhodobacter sphaeroides by atomic force microscopy (AFM) revealed a unique organization of arrays of dimeric reaction center-light harvesting I-PufX (RC-LH1-PufX) core complexes surrounded and interconnected by light-harvesting LH2 complexes (Bahatyrova, S., Frese, R. N., Siebert, C. A., Olsen, J. D., van der Werf, K. O., van Grondelle, R., Niederman, R. A., Bullough, P. A., Otto, C., and Hunter, C. N. (2004) Nature 430, 1058-1062). However, membrane regions consisting solely of LH2 complexes were under-represented in these images because these small, highly curved areas of membrane rendered them difficult to image even using gentle tapping mode AFM and impossible with contact mode AFM. We report AFM imaging of membranes prepared from a mutant of R. sphaeroides, DPF2G, that synthesizes only the LH2 complexes, which assembles spherical intracytoplasmic membrane vesicles of approximately 53 nm diameter in vivo. By opening these vesicles and adsorbing them onto mica to form small, < or =120 nm, largely flat sheets we have been able to visualize the organization of these LH2-only membranes for the first time. The transition from highly curved vesicle to the planar sheet is accompanied by a change in the packing of the LH2 complexes such that approximately half of the complexes are raised off the mica surface by approximately 1 nm relative to the rest. This vertical displacement produces a very regular corrugated appearance of the planar membrane sheets. Analysis of the topographs was used to measure the distances and angles between the complexes. These data are used to model the organization of LH2 complexes in the original, curved membrane. The implications of this architecture for the light harvesting function and diffusion of quinones in native membranes of R. sphaeroides are discussed.


Assuntos
Membrana Celular/ultraestrutura , Complexos de Proteínas Captadores de Luz/ultraestrutura , Microscopia de Força Atômica , Modelos Moleculares , Rhodobacter sphaeroides/ultraestrutura , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Membrana Celular/genética , Membrana Celular/metabolismo , Complexos de Proteínas Captadores de Luz/genética , Complexos de Proteínas Captadores de Luz/metabolismo , Mutação , Rhodobacter sphaeroides/enzimologia , Rhodobacter sphaeroides/genética
6.
Nanotechnology ; 19(2): 025101, 2008 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-21817532

RESUMO

We report the directed assembly of the photosynthetic membrane proteins LH1 and LH2 isolated from the purple bacterium Rhodobacter sphaeroides onto chemically patterned substrates. Nanoimprint lithography was used to pattern discrete regions of amino- and fluoro-terminated or poly(ethylene glycol) self-assembled monolayers onto a glass substrate. Densely packed layers of assembled protein complexes were observed with atomic force microscopy. The protein complexes attached selectively to the amino-terminated regions by electrostatic interactions. Spectral images generated with a hybrid scanning probe and fluorescence microscope confirmed that the patterned proteins retained their native optical signatures.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...